The Composition of the Auditory Profile

Prof Mark E Lutman

Institute of Sound and Vibration Research
University of Southampton, UK
Rationale for Auditory Profile

- Vast majority of hearing impairments in adults are sensorineural (SNHL) - typically due to degeneration of hair cell function in cochlea
- Affecting at least 17% of general adult population (>100m adults in Europe)
- Commonly measured in terms of sensitivity to quiet sounds (the audiogram)
- Wide variety of self-rated disability and performance on speech recognition tasks among people with similar audiograms
- Need for better characterisation of hearing abilities, beyond simply the audiogram
Characterisation of SNHL

- Plomp model components A and D
- Attenuation or Audibility component (A)
 - Speech may be inaudible because it is below absolute threshold, or masked by noise to a normal extent
- Distortion component (D)
 - Speech may be distorted or excessively masked by noise (supra-threshold hearing deficits)
- There are opposing views in the literature on whether the A or D component is more important - for mild, moderate and severe hearing losses
Research questions

- What are the important components of D?
- How do these vary with severity of hearing loss?
- Does D component vary independently of A (alternatively, can we predict D from A)?
- Can we identify distinct sub-types of SNHL, based on combinations A and D?
Potential applications

- Can measurement of Auditory Profile be achieved within typical clinical constraints?
 - Modest time expenditure
 - With sufficient accuracy/reliability
 - Feasible equipment set-up
 - Minimal staff training and need for expertise
Auditory Profile tests

1. Audiogram (a-c + bc; 0.25 – 8 kHz)
2. Spectral and temporal resolution (0.5, 3 kHz)
3. Loudness perception (0.5, 3 kHz)
4. Speech recognition in quiet
5. Speech recognition in stationary and fluctuating noise without directional cues

...
Auditory Profile tests (continued)

6. Speech recognition in stationary and fluctuating noise with directional (monaural and binaural) cues

7. Self-reported disability (speech, spatial hearing) and handicap (behaviour and social relationships): Gothenburg Profile

8. Cognitive function: Lexical Decision test
Implementation of AP tests

- Common test platform based on Personal Computer, sound card and headphones
- Four languages for speech tests and questionnaire
- Five centres: Amsterdam (AMC, VUMC), Linkoping, Oldenburg, Southampton
- Benchmarking to assure similar set-ups
Development and validation

- 30 normal hearing (NH) participants
- 73 hearing-impaired (HI) participants (fairly symmetrical hearing)
- Measures of test-retest repeatability
- Distributions for NH and HI groups
- Correlation analysis (redundancy)
- Preliminary factor analysis
Outcome of validation stage

- Measures appropriately differentiated NH and HI groups
- Satisfactory repeatability
- Equivalence across centres, except for speech tests (adjusted according to reference values)
- Elimination of redundant measures reduced time required for AP to approximately 60-90 minutes
- Factor analysis supported multi-factorial concept of AP
Evaluation of Auditory Profile

- Study data collection (virtually) complete
- 25 NH and 100 HI participants
- Data checking complete
- Analysis commencing results available in February 2009